Теплообменники: виды, устройства, принцип работы
Теплообменник используется для обмена тепла между двумя средами. Работа такого механизма основывается на взаимосвязях греющей и нагреваемой жидкостей. Помимо этого, существуют системы, в которых изменяется микросостояние сред, благодаря чему происходит конденсация, испарение, смешение. Принцип действий устройства бывает смесительной (когда смешиваются холодные и горячие среды), регенеративной (когда поверхность по очереди омывается разными средами), рекуперативной (когда тепло от нагретого теплоносителя передаются через стенку). Применяется в:
- Хим. промышленности;
- Коммунальном хоз-ве;
- Металлургии;
- Энергетике.
Виды теплообменников
По взаимодействию сред
Поверхностные Предполагается, что среды таких аппаратов не перемешиваются друг с другом. Передача тепла в теплоносителях происходит через поверхности — пластины или трубки в пластинчатых и кожухотрубных соответственно. Также такие системы можно назвать рекуперативными. В таком случае, жидкости неодинаковых температур проходят по установке, не смешиваясь друг с другом, а тепло в этот момент проходит через металлическую стенку. По такому принципу строится работа котлов, нагревателей, испарителей, охладителей, а также конденсаторов. Смесительные Также известны как контактные. В их основе лежит непосредственный контакт двух веществ. Они помогают охлаждать и нагревать твердые, жидкие и газообразные вещества. Также поддерживают конденсацию паров, испарений и кристаллизации. Зачастую их применяют, чтобы охладить или нагреть среду с помощью специального раствора или газа. Контактные теплообменники широко используется для изменений температур растворов и кристаллизации растворенного компонента. Также для охлаждения или нагрева растворов промежуточными теплоносителями, твердых частиц и тел газами, и жидкостями. Контактный теплообменник часто используют в работе энергетической промышленности, а также в очистке сточных промышленных вод. Чтобы попытаться объяснить специфику контактных теплообменников в двух словах, то можно сравнить его с тем, когда человек дует на горячий напиток, чтобы остудить его. Их разделяют на:- Нагревательные;
- Охладительные;
- Испарительные;
- Плавительные;
- Конденсаторные;
- Кристаллизаторные.
По внутреннему строению
Кожухотрубные Теплообменник такого вида сделан из кожуха (это сосуд с высоким внутренним давлением) с большим пучком из труб внутри. Получается, что одна среда протекает между трубок, а другая — по трубкам. Получается, что движение среды происходит внутри кожуха. Такая конструкция используется, чтобы передавать тепло специальными потоками. Есть три типа кожухотрубных теплообменников:- С трубными решетками – фиксированными
Решетка плотно закрепляется в кожухе с помощью сварочных швов. Популярная конструкция, позволяющая проводить очистку труб механическим и химическим способами.
- U-образные теплообменники
Пучок кожухотрубных систем, состоящий из трубок в форме буквы U. Из-за одной свободноплавающий стороны тепловой расширитель можно использовать без компенсаторов. Но с такими отводами проблематично работать, а также очищать их.
- С плавающей головкой
Самый простой в обслуживании вид теплообменника, поскольку задняя решетка не прикреплена к корпусу. Такие теплообменники могут сохранять работоспособность при температуре свыше 93,33°C. Также конструкции функционируют даже в экстремальных ситуациях.
Пластинчатые Такой теплообменник применяют в химической и пищевой промышленностях. Одно из самых больших преимуществ этого теплообменника – это высокая эффективность теплопередачи. Дело в том, что пластины, которые должны разделять жидкости, тоньше, чем другие материалы, поэтому тепловые потери снижаются, увеличивая скорость передачи тепла. Из оребренных труб Они используются в обычной жизни: автомобильные радиаторы, внутренние и наружные кондиционеры. А также охладители, которые применяются, когда невозможна эксплуатация вторичного ресурса. Если для охлаждения нельзя использовать воду, конструкцию обдувают вентиляторы. Спиральные Могут работать в среде с высокой вязкостью или механическим включением, которое ведет к образованию осадков. При этом возможны только незначительные потери давления. Для каждой из рабочих сред необходима механическая очистка. Спиральное строение позволяет конструкции сохранять компактные размеры, обладать низкими расходами электричества, а также иметь эффективную теплопередачу.По типу передачи тепла
Регенеративные Движение теплоносителей имеет периодичный характер. Пользуются популярностью для охлаждения и нагрева воздушных масс. В таких устройствах на одну поверхность нагрева воздействует горячая и холодная жидкости. Например, в автомобиле теплообменник используется для охлаждения двигателя. Он работает так: жидкость, которая охлаждает двигатель, проходит через трубки внутри теплообменника. В то же время, воздух, который проходит через радиатор, охлаждает жидкость, которая находится внутри трубок. Это позволяет сохранять двигатель в хорошем состоянии и предотвращать перегрев.Среды в аппарате делятся на группы
Жидкость с жидкостью; Пар с жидкостью; Пар с паром. Помимо этого, популярностью пользуются сочетания пара с жидкостью, газа с газом, а также жидкости с газом. Также они делятся по направлению движения:- Противоточные – это холодные и горячие жидкости, движущиеся в противоположных направлениях.
- Прямоточные – это холодные и горячие среды, движущиеся в одном направлении.
- Поперечные – это холодные и горячие жидкости, которые движутся под углом в 90°C относительно друг друга.
Организация теплообменника
Одно из современных устройств в аппарате – пластинчатый разборный. Его создают из подвижных и неподвижных прижимных плит, имеющих отверстия. Они помогают подсоединиться с помощью патрубков по элементам трубопровода. В середине расположены пластины из титана или нержавеющей стали. Между рядами устанавливается уплотненная прокладка, невосприимчивая к высоким температурам и давлению. Это делает конструкцию герметичной.Как действуют теплообменники
Теплообменное оборудование работает с помощью специального раствора: он перемещается по собственными каналам, сделанным из гофоропластин. Пластины расставлены именно так, чтобы каждая жидкость при работе уходила в собственный канал, чередующийся через одну пластину. Пластины конструкции идентичны, поэтому их монтаж происходит легко. Также теплообменник содержит в себе четыре коллектора, которые помогают при вводе и выводе серед. При этом почти все пластины взаимодействуют друг с другом: только первая и последняя не участвуют в работе. Существует два государственных стандарта, которые регулируют перемещение жидкости в трубах. ГОСТы — №6357 и №12815. Пластины устанавливают параллельно друг другу. Так теплообменная конструкция образуют каналы, по которым проходит среда, благодаря чему начинается теплообмен. Получается, что пластина — одна из важнейших частей в теплообменнике. Ее создают почти из любых сплавов стали любой подходящей толщины. Для герметичности на ней предусмотрены упругие резиновые уплотнения.Подбор теплообменника
Можно найти идеальный теплообменник, подходящий почти для любых нужд. При этом существуют большие различия между конструкциями, жидкостями и техническими характеристиками аппарата. Все эти факторы сильно влияют на конструкцию агрегата, его расчеты, особенности и даже габариты. Важно обращать внимание на:- Необходимый класс жидкости и ее свойства;
- Мощность теплообменника;
- Габариты конструкции;
- Расход на устройство.
Вывод
Теплообменный аппарат – это устройство, передающее тепло между нагретыми и холодными средами. Теплообменники пользуются большой популярностью, поэтому с каждым годом их строение меняется. Сейчас, например, большую популярность набирают пластинчатые, вытесняя с рынка кожухотрубные, поскольку первые намного проще и универсальней в использовании. Они популярны в:- Пищевой промышленности
- Металлургии
- Строении судов